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Open up a (sufficiently advanced) mathematics textbook to the right page, and
you can find a definition like the following:

Definition.

Let I be a non-empty set. A filter over I is a set F ⊆ P(I) that does not
contain ∅ and which meets the following conditions:

(i) If S, T ∈ F , then S ∩ T ∈ F , and
(ii) If S in F and S ⊆ T ⊆ I, then T ∈ F .

Furthermore, if F is also complement-complete, then it is an ultrafilter.

If you’re at all like me, you spend a good couple hours trying to get a sense of
how this definition works and why it allows us to prove interesting things before
eventually giving up and seeing what’s new on Netflix.

No surprise; mathematics texts are a genre unto themselves, and one most
philosophers haven’t been trained to read. But it is also unfortunate. Ultrafilters
are a powerful technical tool that philosophers can put to good use. Philosophi-
cally accessible introductions to other technical tools aren’t hard to find, but some-
how filters and ultrafilters have been overlooked.1 As a result, ultrafilters remain
a common gap in the technically-minded philosoper’s toolkit.

My goal here is to fill that gap, presenting ultrafilters and theorems about them
using philosophically familiar ideas. While some philosophers might encounter
ultrafilters while studying topology, I’ll present them as used in another of their
natural habitats, model theory. Łos’s theorem — the central model-theoretic result
about filters and ultrafilters — says that, if a set of propositions comprises an ul-
trafilter, some model will make true exactly the sentences expressing propositions
in the filter. It is a powerful model-theoretic tool for showing that certain models
exist. But if we don’t understand the tool, we can’t use it.

What philosophically familiar ideas are we going to use here? Those of possible
worlds and propositions. In particular, we can think of ultrafilters as a special kind
of set of propositions, or a special kind of ‘propositional theory’. A filter is a set
of propositions that meet certain conditions, and an ultrafilter is a filter that meets
an additional condition. In particular, a filter is a set of propositions that is closed
under (finite) conjunction and implication; and an ultrafilter is a filter that is also
negation-complete.

1They go unmentioned, for instance, in popular textbooks such as Boolos et al. 2002, Gamut
1991a,b, and Sider 2010. Enderton 2001: 142 mentions them briefly only to set them aside. Dis-
cussions in other books popular in philosophy graduate programs (e.g. Mendelson 1997: 129–136)
aren’t much more accessible than those in standard mathematics texts, such as Chang and Keisler
1990: 211–219.
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Starting from this basic idea, I will run through two main results — the central
theorem on ultrafilters and Łos’s Theorem — and then show how we use them to
prove the compactness theorem (which says that if every finite subset of Γ has a
model, then Γ does, too.) None of the results are novel, but my hope is that, by
seeing them worked through in propositional clothing, they will become accessible
to a larger audience.

1 Propositional Theories

1.1 Background

Suppose we have a set of worlds W. They may be possible worlds, but they don’t
have to be. The only things that matters (for our purposes) about them are that
(i) they make sentences true or false, and (ii) every world is ‘classically logical’ —
that is, for any world w, there is a model M that agrees with w. More precisely,
for every world w, there is a model Mw where φ is true at w if and only if φ is
true on Mw. (We will make this even more precise later, but this is enough to be
getting on with for now.)

With this in hand, here are a few standard definitions.

Definition.

• A W-proposition is any subset of W.

• If P and Q are W-propositions, their conjunction is P ∩Q.

• If P is a W-proposition, its negation is W − P, that is, the set of
worlds in W that are not in P.

• If P and Q are W-propositions, then P implies Q iff P ⊆ Q.

• ∅ is the impossible propositions.

• W is the W-necessary proposition.

• If φ is a sentence, the W-intension of φ, written JφKW , is the set of
worlds where φ is true.

When we know what the set W is, we drop all the ‘W’s in the above and just call
them propositions, intensions, and so on. We also write the negation of P as just
−P. That the definitions for propositions are pretty good is shown by the fact that
— given our condition (ii) on W — we have:

Proposition 1.

• J>K = W

• J⊥K = ∅

• J∼φK = −JφK
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• Jφ ∧ ψK = JφK∩ JψK

• JφK implies JψK iff Jφ→ ψK = J>K.

1.2 Filters

1.2.1 As Finitely Consistent Theories

Just as we often call a set of sentences a ‘theory’, we can call a set of propositions
a ‘theory’ as well. More precisely, if T is any set of W-propositions, we will call it
a a W-propositional theory.

From this perspective, a filter is simply a special kind of propositional the-
ory:

Definition.

If T is a W-propositional theory, then T is a filter over W iff it

(i) is closed under pairwise conjunction;

(ii) is closed under implication; and

(iii) does not contain the impossible proposition.

By working through our definitions of ‘implication’ and the like, you can see that
this definition is the same as the one at the beginning of this paper, with W replac-
ing I. But philosophers tend to have a much better developed sense about how to
think about propositions, conjunction, and implication than about arbitrary sets,
powersets, intersection, and the like, making our current definition easier to digest.

So a filter is a kind of propositional theory. Why should we care about it?
Well, because filters are something like consistent propositional theories. Here’s the
intuitive idea. Suppose a propositional theory contained contradictory premises.
Then those premises have, as an implication, the impossible proposition. But since
a filter is closed under conjunction and implication, if a filter had contradictory
premises, it would contain the impossible proposition — which it doesn’t.

This intuitive idea is close, but not quite, right. Filters are closed under pairwise
conjunction: if p and q are in an ultrafilter, so is p ∩ q. As a result, they will
also be closed under finite conjunction, since any finite conjunction can be gotten
by a finite number of pairwise conjunctions. (p-and-q-and-r is just p-and-(q-and-
r), and so on.) But a filter could still, in principle, contain an essentially infinite
contradiction. For instance, it could contain, for each n, the proposition that there
are at least n F’s, but then also include the proposition that there are only finitely
many Fs. No finite conjunction of those propositions are inconsistent; but of course
the conjunction of all infinitely many of them is.

This is a big part of why filters are interesting. Closure under finite conjunction
is much easier to achieve than closure under arbitrary conjunction. If we can get
a propositional theory that has the weaker property, we can use various results
about filters to learn more about it. One example, that we will come to at the end
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of this paper, is the first-order compactness theorem. This theorem says that if every
finite subset of a set of formulas Γ has a model, then so does Γ. In other words,
when it comes to first-order logic, any set of formulas that is finitely consistent is
also infinitely consistent. The reason we can prove this is that we can use the finite
consistency of all of Γ’s subsets to come up with a finitely consistent propositional
theory, and then use facts about that propositional theory to construct a model that
makes all of Γ true.

1.2.2 Alternative Definitions

Sometimes texbooks provide alternative definitions of filters. A reasonably com-
mon variant drops the third condition from the definition — the one that excludes
the impossible proposition — and goes on to distinguish ‘proper filters’, which
exclude J⊥K, from ‘improper filters’.2 This is mere teminological deviation. If we
wanted, we could call propositional theories closed under implication and con-
junction ‘prefilters’. Then our ‘prefilters’ would correspond to their ‘filters’ and
our ‘filters’ would correspond to their ‘proper filters’. (Their ‘improper filters’
would be our ‘prefilters that are not filters.’)

With a fixed background set of worlds W, a different definition for ‘filter’ (in
our ‘proper’ sense) is also possible:

Definition.

If T is a W-propositional theory, then T is a filter∗ over W iff

(i∗) it is conjunction complete: a W-conjunction is in T iff both of its
conjuncts are; and

(ii∗) it does not contain all of the W-propositions.

It is not terribly difficult to see that the two definitions are equivalent.

Proof.

First, suppose T is a filter∗. We need to show it meets conditions (i)–(iii). The con-
junction of every p with J⊥K is J⊥K, so if J⊥K was in T, every W-proposition p would
be in T, violatiing condition (ii∗) and making T not a filter∗. Since it is a filter∗, T
meets condition (iii). Also, T meets condition (i) by the right-to-left direction of (i∗).
For (ii), note that if p implies q, then p = p ∩ q. So if p ∈ T and p implies q, by the
left-to-right direction of (i∗), q ∈ T. So T is closed under implication, meeting (ii).

For the other direction, suppose T is a filter. Since by (iii) it doesn’t contain J⊥K,
it meets condition (ii∗). By (i), if p, q ∈T, then p ∩ q ∈ T, so T meets one direction of
(i∗). For the other direction, note that a conjunction implies each of its conjuncts, so
closure under implication tells us that if p ∩ q ∈ T, both p and q are, too, meeting the
other direction of (i∗). ∴

2E.g. Chang and Keisler (1990: 221–222).
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1.3 Ultrafilters

Suppose that T is a filter over W. Then T might (or might not) meet any of the
following three conditions.

Definition.

Maximality: T is the only filter over W that includes T.
That is, if T ⊆ T′ and T′ is a filter over W, then T = T′.

Prime: T is disjunction-complete.
That is, for any W-propositions p and q, p ∪ q ∈ T iff either p ∈ T or
q ∈ T.

Ultra: T is negation-complete.
That is, for any W-proposition p, either p or its negation is in T.

Conceptually, these are all different. Maximality tells us that T is a ‘biggest’ filter:
there’s no way to add propositions to the filter without making it a non-filter.
Primeness tells us something about how the filter deals with disjunctions, and
ultra-ness tells us something about how it interacts with negation.

Despite the conceptual differences, though, the three are equivalent properties
over filters:

Theorem 2.

If T is a W-filter, then it is maximal iff it is prime iff it is an ultrafilter.

We’ll prove it here, leaving the ‘W’ indexes off for readability.

Proof.

Suppose first that T is an ultrafilter. Take any proposition p. Since T is ultra, either p
or −p is in T. Suppose we extend T by adding p. If p ∈ T, then our addition doesn’t
extend it. If instead −p ∈ T, then if our extension is closed under conjunctions,
p ∩ −p = J⊥K will be in this extension and so it will not be a filter. Thus it is
maximal.

Next, suppose that T is maximal. If p is in T, then so is p∪ q, since p implies p∪ q
and filters are closed under implication. Conversely, suppose p∪ q is in T but neither
p nor q are. If the conjunction of each of p and q with p ∪ q were impossible, then
p∪ q itself would be impossible. So at least one of p or q could be added to T without
making it not a filter, contradicting its maximality. So either p ∈ T or q ∈ T, making
it prime.

Finally, suppose T is prime. Since J>K is in T (being implied by every proposition),
and for any proposition p, p ∪−p = J>K, by T’s primeness, either p ∈ T or −p ∈ T.
So T is ultra. ∴

The proof shows we can go in a circle from ultra-ness, through maximality and
primeness, and back to ultra-ness, which means all three properties are equivalent.
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2 The Central Theorem on Ultrafilters

2.1 The Theorem and What it Says

Ultrafilters are important for a number of reasons. One happy fact, though, is

Theorem 3. The Central Theorem on Ultrafilters

Every filter can be extended to an ultrafilter.

This is known as the Central Theorem on Ultrafilters.
In first-order logic, we have Lindenbaumm’s Lemma, which tells us that a

(proof-theoretically) consistent theory (that is, set of sentences) can be expanded
to a consistent, negation-complete theory. For that lemma, we start with a con-
sistent theory Γ, and then take a well-ordering of the sentences of the language.
We construct a maximal theory by going through those sentences in order, adding
each to our theory if the result would be consistent, and leaving it out otherwise.
By the ‘end’ of this (infinite) process we will have considered every sentence, and
thanks to a few facts about how negation and consistency work together, for each
sentence we will have thrown either it or its negation (when the latter’s turn came
around) into our theory.

The idea behind the proof of the Central Theorem is essentially the same. We
well-order all the W-propositions. Then we take our starting filter and go through
each of these W-propositions in order. If the result of adding a W-proposition to
it and closing the result up under conjunction and implication is also a filter, we
do that. Otherwise, we don’t. By the ‘end’ of this (infinite) process, we will have
considered every W-proposition, and thanks to a few facts about how set theory
works, for each W-proposition we will have added either it or its negation (when
the latter’s turn came around).

In order to do this, we have to make sense of ‘the result of adding a W-
proposition to a filter and closing the result up under conjunction and implication’.
We do this with additions: if T is a W-filter and p a W-proposition, then T + p is,
intuitively, the result of adding p to T and closing the result up under conjunction
and implication.

The way we do this is twofold. First, we conjoin p with each proposition in
T. Then we take all those propositions and add in any other proposition they
imply. The second step makes the result closed under implication, and since T
was conjunction-closed, the first step makes our new theory conjunction-closed,
too. Furthermore, since p ∩ q always implies q, every proposition in T will be in
our new theory. And since p ∩W = p, p will be in our new theory as well.

When we roll the two steps together we get:

Definition.

Addition: T + p = {q ⊆W : for some a ∈ T, a ∩ p implies q}.
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(Note that if a ∈ T, then a ∩ p ∈ T + p because a ∩ p implies itself.)
This is then the notion that we use in proving the Central Theorem. When we

get to each W-proposition p in our well-ordering, we trade in our previous filter
T for the new one T + p if that is, in fact, a filter. Happily, it’s possible to show
that, if T is a filer, then T + p is a filter if and only if −p is not already in T. This
means that, by the time we’re done, for each W-proposition, we either added it or
refrained from adding it because its negation was already in.

One final point is worth mentioning. When it comes to Lindenbaumm’s lemma,
if the language of our theory is uncountable, the axiom of choice must be assumed;
otherwise, there’s no guarantee that the sentences of the language can be well-
ordered. Similarly, when it comes to the Central Theorem, if W is infinite, the
axiom of choice must be assumed so that the W-propositions can be well-ordered.
(Since the set of all W-propositions is the powerset of W, even if W is only count-
ably infinite, there will uncountably many W-propositions.) The Central Theorem
— and indeed, any result that follows from it — should be understood as requiring
choice.

2.2 Proving the Theorem

Before we prove the theorem itself, we should start with verifying our claims about
additions. We have:

Lemma 4.

Suppose T is a filter over W and p is a W-proposition. Then

(i) T ⊆ T + p and p ∈ T + p.

(ii) T + p is closed under conjunction and implication.

(iii) T + p is a filter iff −p /∈ T.

Proof.

For (i): Since p = p ∩W and p ∩W ⊆W, this follows from the definition of W + p.
For (ii), we have two parts. First, that T + p is closed under implication. Suppose

q ∈ T + p and q implies r. Since q ∈ T + p, there must be some a ∈ T where a ∩ p
implies q. In this case, though, a ∩ p implies r (since implication is transitive), so r is
also in T.

For (ii) and conjunction closure: If q1 and q2 are in T + p, then there are a1 and a2

in T where a1 ∩ p implies q1 and a2 ∩ p implies q2. Since T is a filter, a1 ∩ a2 is also in
T. But the conjunction of a1 ∩ p and a2 ∩ p is the same as the conjunction of (a1 ∩ a2)

with p, which will imply the conjunction of p with q1 ∩ q2. Thus q1 ∩ q2 will be in
T + p, and so it is closed under conjunctions.

For (iii): If −p ∈ T, then by part (i), −p ∈ T + p and p ∈ T + p. Since the
conjunction of p and −p is J⊥K, this will be in T + p by part (ii), making T + p not a
filter.
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Conversely, suppose that T + p is not a filter. By part (ii), this can only happen if
J⊥K ∈ T + p. By the definition of T + p, there must be a a in T where a ∩ p implies
J⊥K. This means that a implies −p; since T is closed under implication, it contains
−p. ∴

Now we can prove theorem 3. To do this, we rely on a version of the axiom
of choice that says that every set can be indexed by ordinals, and we rely on
transfinite induction on the ordinals. There are only three kinds of ordinals: zero,
‘successor’ ordinals which are some ordinal α plus one, and ‘limit’ ordinals, which
are the union of all ordinals smaller than them. We will use an ordinal indexing
of all the W-propositions to construct an ordinal-indexed series of filters, and then
show that the union of all these theories is an ultrafilter.

Proof.

Let T be a filter over W and take an indexing of the W-propositions by ordinals. When
p is indexed by α we call it pα. Thanks to the fact that ordinals are well-ordered, there
will be a least ordinal γ where every W-proposition has an index less than γ. Now
we define a series of filters as follows.

T0 = T

Tα+1 =

{
Tα + pα, if that is a filter, and
Tα otherwise.

Tα =
⋃

β<α

Tβ for limit α

We want to show that each Tα in this series is a filter, and that if β < α, then Tβ ⊆ Tα.
This is done by induction on the ordinals. In the base case Tα = T0, which is a filter
by assumption. For the induction step, we assume that if β < α, then Tβ is a filter.

When α is a successor ordinal, it is a filter by construction, and if Tα 6= Tα+1, then
Tα ⊆ Tα+1 by lemma 4.i.

For a limit ordinal α, it’s clear that if β < α, then Tβ ⊆ Tα. But we need to show
that it is a filter. To do that we have to show that it meets all three conditions of being
a filter. For the third condition, if J⊥K ∈ Tα, then J⊥K would have to be a member of
some Tβ for β < α, which contradicts the induction hypothesis that all such Tβ are
filters.

For implication, suppose that q ∈ Tα and q implies r. To be in Tα, q must be in
some Tβ for β < α. But since Tβ is a filter, it is closed under implication, so r ∈ Tβ

and thus also in Tα.
For conjunction, suppose that q and r are in Tα. Then there are βq and βr, both

less than α, where q ∈ Tβq and r ∈ Tβr . If β is whichever is the larger of the two, then
q, r ∈ Tβ. But Tβ is a filter, and so closed under conjunction, so q ∩ r ∈ Tβ. Since Tα

includes Tβ, q ∩ r is in Tα also.
So every Tα in our construction is a filter. Now we take Tγ, the union of all the

Tα’s in our construction. It is also a filter, by the above argument. We just need to
show that it is an ultrafilter. To do this, note that if p is any W-proposition it is pα for
some α. If Tα + pα was a filter, then p ∈ Tα and so in Tγ. If instead Tα + pα was not a
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filter, then by lemma 4.iii, −p was already in Tα, so −p ∈ Tγ. ∴

3 Intensional Spaces

Up until now we’ve been focused purely on the propositional side of things. We’ve
introduced filters and ultrafilters as a special case of propositional theories — sets
of propositions — and shown how to understand the central theorem on ultrafilters
as a propositional version of Lindenbaumm’s Lemma. But now that we’ve done
this, what can we do with these tools?

Several things, in fact. But we’ll focus on just one here, a model-theoretic one.
The main theorem connecting ultrafilters to model theory is Łos’s theorem which
says, roughly, if you have an ultrafilter T over a space of worlds W, and if every
world in W corresponds to some model (of a fixed language), then there is a model
that makes all the propositions in T true.

We will precisify all of this in a little bit. But before we do, it will be helpful to
connect our theory of W-propositions more directly to model theory.

3.1 The Model-Theoretic Background

We should start by fixing ideas about model theory. Suppose we have a first-
order language L , with a fixed stock of names and predicates, infinitely many
variables, and primitive logical symbols ∼, ∧, ∃, and =. Other logical symbols are
understood as defined in the usual way.

A model M is an ordered pair 〈D, I〉 of a non-empty domain D and an in-
terpretation function I. For any constant α in L , I(α) ∈ D, and for any n-adic
predicate Π in L , I(Π) ⊆ Dn. (That is, I(Π) is a set of n-tuples of things drawn
from D.)

For each model M of L , a variable assignment over M is a function from
variables of L to elements of D. A term is any constant or variable, and the
denotation of a term α on a modelM relative to a variable assignment a, written
αM,a, is I(α) if a constant and a(α) if a variable. If a is a variable assignment over
M and o ∈ D, a[x . o] is the assignment just like a except that it maps x to o.

To avoid clutter, we write a sequence‘ α1, . . . , αn’ as ‘ #»α ’. Now we can recursively
define truth of an open formula on a model relative to a variable assignment,
writtenM, a � φ. The definition runs:

Definition.

LetM be a model and a a variable assignment. Then

(i) M, a � Π #»α iff 〈
#       »

αM,a〉 ∈ I(Π).

(ii) M, a � α = β iff αM,a = βM,a.

(iii) M, a � ∼φ iffM, a 6� φ.
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(iv) M, a � φ ∧ ψ iffM, a � φ andM, a � ψ.

(v) M, a � ∃xφ iff for some o ∈ D,M, a[x . o] � φ.

When φ is a formula open in x, we allow ourselves to write it as φ(x). Finally, we
say that a formula is true on φ, or M � φ, when it is true on M relative to every
variable assignment overM; andM � Γ ifM � φ for every φ ∈ Γ. And Γ � φ iff,
ifM � Γ, thenM � φ.

It is routine to show that if a closed sentence is true on M relative to any
variable assignment then it is true onM relative to all of them.

3.2 Models and Intensions

Models are extensional: they assign referents to names, and extensions to pred-
icates. But when dealing with possible worlds semantics, we are interested in
intensional assignments. These are often taken as functions from possible worlds
to extensions. For instance, the extension of ‘dog’ is the set of all the dogs; the
intension of ‘dog’ is the function from each possible world w to the set of things
that are dogs in w.

Our ‘possible worlds’ don’t have things in them — the set W is really just an
index set — but if every world in W is associated with a model, we can use things
in the model instead. For instance, if w is a world andMw is its associated model,
then there is the set of things that are in the extension of ‘dog’ inMw. So, for a set
of worlds W, if each one has an associated model, we can have something like an
‘intension’ defined on these worlds and models.

First, a definition to make this idea of ‘an associated model’ precise.

Definition.

A intensional space over a language L is an ordered pair W = 〈W, i〉; W is
a set of worlds and i a function where, for every w ∈W, i(w) is a model
of L .

When M = i(w), we write it as ‘Mw = 〈Dw, Iw〉’, which will help streamline
notation a bit. Notice that every model in an intensional space is a model of the
same language as every other.

Now we can define the notion of an intension, relative to an intensional space.

Definition.

Let W be an intensional space over L , Π a predicate of L , and α a name of
L . Then:

• The W-intension of Π, written JΠKW, is the function from W de-
fined by JΠKW(w) = Iw(Π).

• The W-intension of α, written JαKW, is the function from W defined
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by JΠKW(w) = Iw(α).

Notice something about the second definition. Kripke (1972) taught us that names
are ‘rigid designators’: They designate the same thing in every possible world.
Whatever the merits of Kripke’s lesson for modal semantics generally, they don’t
apply here. Instead, we follow Carnap’s (1956) development, making names pick
out individual concepts: functions from worlds to individuals. Despite the superfi-
cial similarities, we’re doing logic here, not modal semantics, and our choice is the
only one that makes sense from our standpoint.

Notice also that we’ve only defined intensions for particular symbols. But the
structure itself is general. There will be plenty of functions from worlds to objects
that aren’t associated, in an intensional space, with any particular name. We can
generalize them as follows:

Definition.

If W is an intensional space, then:

• An n-adic W-relation (or ‘W-property’, when n = 1) is a function
f from W where, for each w ∈ W, f (w) ⊆ (Dw)n. (That is: f (w) is
a set of n-tuples drawn fromMw’s domain.)

• A W-individual concept is a function g from W where, for any w,
g(w) ∈ Dw.

Now we can see that the W-intension of any predicate is a W-property or relation,
and the W-intension of a name is a W-individual concept, or ‘W-concept’ for short.

3.3 Intensions and Variable Assignments

Back in section 1.1 we helped ourselves to the notion of ‘the set of worlds at which
φ is true’, and wrote it as JφKW . But since different assignments of worlds to
models will result in different sets of worlds, we should have instead relativized
that notion to an intensional space. We can fix that now:

Definition.

If W is an intensional space over L and φ is any sentence of L , then JφKW =
{w ∈W :Mw � φ}.

In other words: JφKW is the set of worlds whose associated models make φ true.
When it comes to models, we define truth-in-a-model by first defining truth in a

model relative to a variable assignment. This gives the notion some nice properties,
and makes it easy to work with. In short, it lets us treat the semantic properties
of complex expressions (relative to an assignment) as determined by the semantic
properties of their parts (relative to an assignment). The idea is that, while we
can’t say whether a formula like ‘Philosopher(x)’ is true or false simpliciter, we can
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say that it is true or false relative to some assignment to the variable ‘x’; and this
is helpful in defining truth-in-a-model for quantified sentences.

We can do something similar with open formulas and propositions. Given an
intensional space W, we know what W-proposition ‘Philosopher(jason)’ expresses:
it’s the set of worlds w where Mw makes that sentence true. But we can also
ask, relative to some way of assigning an intension to the variable ‘x’, what W-
proposition ‘Philosopher(x)’ expresses. And the answer isn’t hard to come by.
The assigned intension will be a W-individual concept that returns, at each Mw,
something in the extension of ‘Philosopher’ atMw.

More generally, let a W-assignment be a function A from variables to W-
individual concepts. We want to say what it is for an open formula to W-express a
proposition (that is, a set of worlds) relative to A. To do this, it’s worth noting that
we can think of A in any of three different ways.

Way 1: The way we already described it. A is a function from variables to
W-individual concepts.

Way 2: As a function from variable-world pairs x, w to objects in Dw. More pre-
cisely, if A is a W-assignment in the sense of Way 1, we can define another function
A′ where A′(x, w) = A(x)(w) — that is, the result of applying the function A(x)
to the world w. Then A′(x, w) will be an object in Dw.

Way 3: As a function from worlds to variable assignments. If we have a Way-
2 assignment A′, we can define a function A′′ by A′′(w) = a iff a is a variable
assignment onMw where a(x) = A′(x, w). Conversely, if we have a set of variable
assignments, one for each Mw, we can staple them together into one big Way-3
W-assignment A′′.

Technically, the functions A, A′, and A′′ are all different, but only for boring
reasons. They all represent the same general idea, so we won’t distinguish between
them. If we write A(x), we are talking about the intension that A assigns to x. If
we write Aw, we are talking about the variable assignment that A′′ assigns to w.
And if we write something of the form A(x, w), we are talking about the thing that
A′ assigns to x and w. They can all be thought of different presentations of the
same underlying function of two arguments.

With this in mind, we can state more directly a notion of variable-relative ex-
pression.

Definition.

A proposition p W-expresses φ relative to A if and only if p is the set of
worlds w whereMw, Aw � φ. In symbols:

JφKW,A = {w ∈W :Mw, Aw � φ}.

When we defined truth-on-a-model, we made use of the notion one variable
assignment being just like another except for what was assigned to a certain vari-
able. That is, if a is a variable assignment on M and o is in M’s domain, then
a[o . x] is the variable assignment just like x except that it assigns o to x.

We can do something similar here. If A is a W-assignment and g a W-concept,
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we can consider the variable assignment A[g . x], which is just like A except that it
assigns the concept g to x. This is Way-1 thinking. But we can also convert it into
Way-3 thinking. The idea here is that, at each world w, the variable assignment
A[g . x]w is the assignment just like Aw except that it assigns g(w) to x — that is,
A[g . x]w = Aw[g(w) . x].

3.4 Some Facts About W-Propositions

With the foregoing, we can show that, for a fixed intensional space W, proposition
1 extends to

Proposition 5.

If A is any W-assignment,

• J>KA = W

• J⊥KA = ∅

• J∼φKA = −JφKA

• Jφ ∧ ψKA = JφKA ∩ JψKA

• JφKA implies JψKA iff Jφ→ ψKA = J>KA.

I won’t prove all of these here, but I’ll talk through one of them by way of illus-
tration. To show that J∼φKA = −JφKA, we need to show that for any world w in
W, w ∈ J∼φKA if and only if it is not in JφKA. So we let w be an arbitrary world.
If it is in J∼φKA, then Mw, Aw � ∼φ, which means MW , Aw 6� φ. But this means
that w /∈ JφKA. When w is not in J∼φKA, a mirror-image of that argument tells us
that w is in JφKA. The other instances of our expanded version of proposition 1 are
shown in analogous ways.

Something else we can also show:

Proposition 6.

If φ � ψ, then for any W-assignment A, then φ implies ψ. (That is, JφKA ⊆
JψKA.)

The idea here is similar. If w is a world in JφKA, then Mw, Aw � φ. But if φ � ψ,
this means thatMw, Aw � ψ, too, so w ∈ JψKA. Proposition 6 can be very useful in
streamlining proofs to come later.

Notice, in passing, that proposition 6’s converse isn’t in general true. It may
turn out that there are countermodels to the argument from φ to ψ, but none of
the worlds in W get paired with any of them. In that case, JφKA might W-imply
JψKA even though φ 6� ψ.

The above facts are all, in some sense, propositional corollaries of truth-functional
facts. But facts about how model theory deals with quantification and variable-
binding also have propositional corollaries. First, we have
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Proposition 7.

If A is a W-assignment and g a W-concept, then

JφKA[g.x] ⊆ J∃xφKA.

The proof relies on the equivalence of A[g . x]w and Aw[g(w) . x] noted at the end
of the last section, and runs as follows.

Proof.

Suppose w ∈ JφKA[g.x]. ThenMw, A[g . x]w � φ, soMw, Aw[g(w) . x] � φ, and hence
Mw, Aw � ∃xφ. Thus w ∈ J∃xφKA. ∴

Notice that, while this is close to proposition 6, it doesn’t quite follow from it,
because in proposition 6 both W-expressions were relativized to the same variable
assignment, and here they are not.

For our last observation, start by noting that, when we were doing model the-
ory, it helped to have the concept of a term’s (name or variable’s) denotation on a
model, relative to a variable assignment. This is just whatever that term names, rel-
ative to that assignment. Likewise, we can have the concept of what a term (name
or variable) expresses on an intensional space W, relative to some W-assignment.

In fact, we already have half of this: if α is a name, we have already defined
JαKW, which is the function where JαKW(w) = Iw(α). We can extend this to allow
for variables, too, where the W-concept expressed by a variable x relative to an
assignment A is just A(x). More precisely,

Definition.

Let W be an intensional space over L , α a term of L , and A a W-assignment.

LαMW,A =

{
JαKW if α is a name and
A(α) if α is a variable.

As with other such definitions we drop the ‘W’ when no confusion arises. Now
we can show the following substitution principle:

Lemma 8.

Jφ( #»x )KA[
#      »

LαMA.
#»x ] = Jφ( #»α )K.

Proof.

For this, note that if α is a variable and w ∈ W, LαMA(w) = Aw(α) = αM
w,Aw

, and if α
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is a constant, LαMA(w) = IM
w
(α) = αM

w,Aw
.

w ∈ Jφ(x)KA[
#      »

LαMA.
#»x ]

iffMw, A[
#      »

LαMA . #»x ]w � φ( #»x )

iffMw, Aw[
#                »

LαMA(w) . #»x ] � φ( #»x )

iffMw, Aw[
#              »

αM
w,Aw

. #»x ] � φ( #»x )

iffMw, Aw � φ( #»α )

iff w ∈ Jφ( #»α )KA

The third biconditional relies on the identity noted above, and the penultimate one
on the basic model-theoretic fact thatM, a[αM,a . x] � φ(x) iffM, a � φ(α). ∴

Lemma 8 has a number of immediate corollaries. For instance, if two formulas dif-
fer only in a shuffling of the variables, and two W-assignments differ only in ways
that compensate for those variable-shufflings, then the first formula will express
the same thing on the first assignment that the second formula expresses on the
second.

All of these details show a number of very tight connections between a sen-
tence’s truth-on-a-model, and the various principles governing it, and its expres-
sion of a W-proposition. In many ways these connections shouldn’t be surprising;
W-expression is defined in terms of truth-on-a-model, so we should expect many
of the principles governing it to somehow ‘project up’ into the propositions. On
the other hand, it is useful to have these principles ready to go. We may need them
for some heavier lifting in what’s to come.

3.5 What a Propositional Theory ‘Says’

Everything so far has just been about W-propositions and what sentences express
them. But we can also ask how these notions relate to particular propositional
theories. Suppose, for instance, that T is a set of W-propositions and includes
JPhilosopher(jason)K. If so, there is a very clear sense in which the theory ‘says’
that Jason is a philosopher.

The scare quotes are important. JPhilosopher(jason)K is just some old set of
things we call ‘worlds’, picked out by some fancy set-theoretic apparatus. If there
are genuine propositions, and they are sets of genuine possible worlds, there is
no reason to think JPhilosopher(jason)K is one of them, and much less the one
that counts as the proposition that Jason is a philosopher. But insofar as we
pretend that the ‘worlds’ in W are genuine possible worlds, and pretend that
Mw � φ if and only if φ is true in the world w, then we will want to pretend
that JPhilosopher(jason)K is the proposition that Jason is a philosopher. Since the
pretense helps us understand the underlying model theory, we’ll stick with it here.

This picture of ‘saying’ applies to open formulas and W-assignments, too. Sup-
pose that JPhilosopher(x)KA is in T. What does this ‘say’? Roughly, that the W-
concept assigned to x by A is a philosopher. More compactly: A(x) is a philoso-
pher. When this happens, we will say that A(x) T-satisfies ‘philosopher’. More
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precisely, and expanding for multiple variables:

Definition.

If #»g are all W-individual concepts and T a set of W-propositions, then #»g
#»x . T-satisfies φ iff for any W-assignment A,

JφKW,A[ #»g . #»x ] ∈ T.

Here, the idea is that some W-concepts T-satisfy some formula if the theory T
‘says’ that those concepts are the way the formula requires. For instance, if by
assigning x to g and y to h, ‘x loves y’ gets us a proposition that is in T, then T
‘says’ that g loves h, and these concepts x, y . T-satisfy ‘loves’. Often, it will be
obvious (or won’t matter) which variables go with which objects, in which case we
drop the specification of variables and just say that #»g T-satisfies φ.

4 Łos’s Theorem

All of this work has a point. We are going to prove that, if a set of sentences
corresponds, in the right way, to a filter, then it has a model. More precisely, if W
is an intensional space over L and T an ultrafilter over W, then there is a model
that makes true φ if and only if JφKW is in T.

Before describing how the proof goes, let’s remind ourselves of the technique
Henkin (1949) used to prove completeness, which has now become the standard
textbook method. The proof shows that if some theory is syntactically consistent,
it has a model. We start with a syntactically consistent theory, and then expand
it to a consistent theory that is negation-complete (via Lindenbaumm’s lemma)
and includes every instance of a witness axiom. We then build a model out of
this theory: Roughly, the constants become the model’s domain (with the witness
axiom ensuring there are enough constants to go around) and we read off the
extension’s predicates from the theory itself. For instance, if ‘Fc’ is in the theory,
we put ‘c’ in the extension of ‘F’, and if ‘∼Fd’ is in the theory, we keep ‘d’ out.

The proof of Łos’s theorem is, in many ways, the propositional counterpart of
this Henkin-style completeness proof. We start with a filter T on an intensional
space W, which is our propositional analogue of a consistent theory. Then we
extend it to an ultrafilter T′, which is our propositional analogue of a negation-
complete extension of T. Then, instead of using constants, we build our model out
of W-individual concepts. Roughly, the W-concepts make up the model’s domain.
(We need no witness axiom to ensure there is enough this time.) And we read
predicates’ extensions from the theory itself: if T′ ‘says’ that g satisfies ‘F’, then we
put g in the extension of ‘F’, and if T′ says that h does not satisfy ‘F’, then we keep
g out.

If the language has an identity predicate, complications arise. In the case of
first-order completeness, the problem is this: c and d may be different constants,
but the theory may include the sentence ‘c = d’. Given the way the meaning of ‘=’
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is hardwired into the model, if c and d are two separate entities in the domain, the
model will not be able to make ‘c = d’ true. In the case of a propositional theory,
the problem is similar. W-concepts g and h may T′-satisfy ‘x = y’, even if they are
different functions. Given the way the meaning of ‘=’ is hardwired into the model,
if we build our model by putting g and h in separately, we will have a hard time
making sure the right formulas come out true on the right variable assignments.

The solution in both cases is the same: Rely on equivalence classes. In the
Henkin proof, we call two constants c and d equivalent if the maximal consistent
set includes ‘c = d’. In the proof of Łos’s theorem, we say that two W-individual
concepts are equivalent if the theory T′ says they are identical; that is, if they T′-
satisfy ‘x = y’. Once we do this, then rather than making our domains out of
constants or W-concepts, we make them out of equivalence classes of such.

Let’s set aside our comparisons with Henkin’s proof and make our own more
precise. We start with another definition.

Definition.

Let W be an intensional space and T an ultrafilter on W. Then, if g and h are
W-individual concepts, g ≡T,W h iff g and h T-satisfy ‘x = y’.

The latter, recall, is equivalent to ‘Jx = yKW,A[g.x][h.y] ∈ T’. In general, when we
have an relation ≡T,W we know what the relevant T and W are, so we leave them
off.

With the resources of the previous section, it isn’t difficult to verify that ≡T,W
is reflexive, transitive, and symmetric, and therefore an equivalence relation. For
instance, when it comes to symmetry, the fact that x = y � y = x combines with
proposition 5 and lemma 8 to tell us that the W-proposition witnessing g ≡ h
implies one witnessing h ≡ g. Since T is a filter, the latter is in T as well, so
h ≡ g. (In the case of transitivity, we also use conjunction-closure so we can get
a W-proposition expressing ‘x = y ∧ y = z’ in T, to then imply one expressing
‘x = z’.)

Once we’ve done that, we can define equivalence classes over W-concepts; [g]TW
is the ≡T,W-class that contains g. As with other cases, we’ll often drop the -scripts.
Now, finally, we can define our model.

Definition.

Let W be an intensional space and T an ultrafilter on W. Then define a model
MT = 〈DT, IT〉 where

(i) DT = {[g] : g is a W-individual concept},
(ii) IT(α) = [JαKW], and

(iii) IT(Π) = {
#  »

[g] : #»g T-satisfy Π~x}.

This model is called the ultraproduct of T on W, and is often written

∏
w∈W
Mw/T.
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To simplify notation, though, we will stick withMT.
Now that we’ve defined the ultraproduct, we’re almost in a position to state

what we need to prove. We just need one last piece of machinery. Where A is any
W-assignment, we let [A] be the assignment on MT where [A](x) = [A(x)]. In
other words, if A assigns some concept to x, then [A] assigns its equivalence class
to x.

Now we can prove, by an induction on the complexity of formulas, that

Theorem 9. Łos’s Theorem

MT, [A] � φ iff JφKA ∈ T.

4.1 The Proof

Before we can get on with proving Łos’s Theorem, we need to verify that our
definition of ‘ultraproduct’ was legit. Parts (i) and (ii) of the definition are going
to be fine, no matter what. But (iii) only makes sense if the following holds:

Proposition 10.

If gi ≡ hi for each i, #»g T-satisfy Π~x iff
#»

h T-satisfy Π~x.

If proposition 10 didn’t hold, then clause (iii) could give us contradictory instruc-
tions. For we could have

#  »

[g] =
# »

[h], #»g T-satisfying Π~x, and
#»

h not T-satisfying Π~x.
The first of these would tell us to put

#  »

[g] in IT(Π) and the second would tell us to
keep it out, and given the identity we can’t do both.

Fortunately, though, this can’t happen.

Proof.

Suppose gi ≡ hi for each i. Then (by appeal to lemma 8 to swap around variables)
there is a W-assignment A where A(xi) = gi and A(yi) = hi for each i, and Jxi =

yiKA ∈ T. Now suppose that #»g #»x /T-satisfies Π #»x . Then, given how we defined A,
JΠ #»x KA ∈ T. But since T is closed under conjunction,

JΠ #»x ∧ x1 = y1 ∧ . . . ∧ xn = ynKA ∈ T.

However, we have that

Π #»x ∧ x1 = y1 ∧ . . . ∧ xn = yn � Π #»y .

By proposition 5 and T’s closure under implication,

JΠ #»y KA ∈ T.
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Given our specification of A,~h #»y /T-satisfies Π #»y , and so by lemma 8 they also #»x /T-
satisfy Π #»x . (The other direction is precisely the same.) ∴

The proof of proposition 10 relied on T being a filter, not on its being an ultrafilter.
As a result, our definition ofMT would have defined a model even if T was merely
a filter instead of an ultrafilter. In that case,MT is called a reduced product rather
than an ultraproduct. However, the proof of Łos’s Theorem does require T to be
an ultrafilter, so for our purposes ultraproducts are more useful than reduced
products.

Now that we know our ultraproduct is legit, we can prove

Lemma 11.

If A is a W-assignment, then

(i)
#              »

αM
T ,[A] ∈ IT(Π) iff JΠ #»α KA ∈ T, and

(ii) αM
T ,[A] = βM

T ,[A] iff LαMA ≡ LβMA.

Proof.

Note that for any term α, αM
T ,[A] = [LαMA].

For (i), right-to-left: Suppose JΠ #»α KA ∈ T. Then JΠ #»z KA[
#      »

LαMA.
#»z ] ∈ T by lemma 8

and so
#      »

LαMA T-satisfies Π~z. So by construction,
#          »

[LαMA] =
#              »

αM
T ,[A] ∈ IT(Π).

For (i), left-to-right: Suppose that
#              »

αM
T ,[A] ∈ IT(Π). Then for some #»g , [gi] =

αM
T ,[A]. By construction, #»g T-satisfy Π #»z . But each [gi] = [LαiMA], so gi ≡ LαiMA. By

proposition 10,
#        »

LαiMA T-satisfy Π #»z , so by lemma 8, JΠ #»α KA ∈ T.
For (ii): αM

T ,[A] = βM
T ,[A] iff (by the above observation) [LαMA] = [LβMA] iff LαMA ≡

LβMB. ∴

Now we are in a position to prove theorem 9. The proof is by induction on the
complexity of formulas.

Proof.

The base case is immediate by lemma 11.
For the induction step, we suppose that for any ψ less complex than φ,MT, [A] �

ψ iff JψKA ∈ T.
For negation, MT, [A] � ∼ψ iff MT, A 6� ψ iff (by the induction hypothesis)

JψKA /∈ T iff (since T is an ultrafilter) −JψKA ∈ T iff J∼ψKA ∈ T.
For conjunction, MT, [A] � ψ ∧ χ iff MT, [A] � ψ and MT, [A] � χ iff (by the

induction hypothesis) JφKA ∈ T and JψKA ∈ T iff (by the fact that T is a filter∗ and so
meets condition (ii∗)) JφKA ∩ JψKA ∈ T iff Jφ ∧ ψKA ∈ T.

For quantification, we go in two directions. First, suppose that MT, [A] � ∃xψ.
Then for some W-concept g, MT[A]([g] . x) � ψ, so MT, [A(g . x)] � ψ. By the
induction hypothesis, JψKA[g.x] ∈ T. Thus by proposition 7 and T’s closure under
implication, J∃xψKA ∈ T.
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For the other direction, suppose J∃xψKA ∈ T. Since T is a filter this proposition is
not empty. Let w ∈ J∃xψKA; thenMw, Aw � ∃xψ, so for some ew ∈ Dw,Mw, Aw[ew .

x] � ψ. Let g(w) = ew for each w ∈ J∃xψKA. (Such a g is guaranteed by the axiom of
choice.) Then each w ∈ JψKA[g.x]. By the induction hypothesis,MT, [A[g . x]] � ψ, so
MT, [A][[g] . x] � ψ, soMT, [A] � ∃xψ. ∴

4.2 Compactness: An Application

So how do we use Łos’s theorem? One thing we can do with it is to prove

Theorem 12. Compactness

If every finite subset of Γ has a model, then Γ has a model.

Of course, this can be proven in other ways; if we have a complete proof system
for which the analogous claim about consistency holds, then we can appeal to
that analogous claim plus the completeness theorem. But one advantage of doing
things this way is that it proves compactness in a purely model-theoretic way: No
detour through proof theory is required.

The idea behind the proof is very simple. We assume that we have a Γ where
each of its finite subsets has a model. We use these subsets and their models to
construct an intensional space W and a filter, where for each φ in Γ, JφKW is in the
filter. Then we extend the filter to an ultrafilter and apply Łos’s theorem. This gets
us a model of every sentence in Γ.

For the space W, let our worlds be the finite subsets of Γ themselves. But we
are assuming for the proof that each finite subset — that is, each world — has a
model. So we know that for every w ∈ W, there is a model Mw that corresponds
to it. In fact, we know something stronger: Mw � w.

(I should note here that this last move requires the axiom of choice. That really
isn’t a big concession, since we’re going to need the axiom of choice later to expand
our propositional theory to an ultrafilter. But without the axiom of choice we might
not be able to select a single modelMw to go with each w.)

At a first pass, we could just let our propositional theory to include JφKW for
each φ in Γ. But if we do this, it will be difficult to show that our theory is closed
under conjunction. We know, though, not just that each sentence in Γ has a model,
but also that each finite subset of Γ has a model, too. So, if φ and ψ are in Γ,
then {φ, ψ} has a model, too, which will also be a model of φ ∧ ψ. If we include
not just JφKW and JψKW in our theory, but also Jφ ∧ ψKW, we’ll have a non-empty
proposition that can help us with conjunction-completeness.

Of course, then we might have to repeat the process again for φ ∧ ψ and some
other sentence χ in Γ, and then again for that conjunction, over and over. But
rather than getting caught in a regress, we can just include, for any finite subset ∆
of Γ, the conjunction of all the sentences in ∆. Since any two of these, conjoined,
will be the conjunction of some other finite subset of Γ, by including all of these,
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we put ourselves in a good position to demonstrate the conjunction-closure of our
theory.

More precisely: If ∆ is any finite subset of Γ. let
∧

∆ be the conjunction of all
the sentences in ∆. What we want is for our theory to include all propositions of
the form J

∧
∆KW.

This helps with conjunction closure. But what about implication closure? Even
if p is a set of worlds that includes J

∧
∆KW for some finite ∆, it might not be of the

form J
∧

ΣKW for any finite subset Σ of Γ. To get around this, we simply include
every proposition implied by one of these ‘starter’ propositions.

One way to do this is to first define the theory

T− = {J∧∆KW : ∆ ⊆ Γ is finite}

and then define
T = {p : for some q ∈ T−, q implies p}.

Equivalently, we could define the whole thing all in one go, with:

T = {p ⊆W : for some finite ∆ ⊆ Γ, J
∧

∆KW implies p}.

Either way we get the same thing.
Now we just have to prove that T is a filter. It’s clearly closed under implication,

just by its definition. To show that it’s closed under conjunction, suppose that p
and q are both in T. Then for some ∆ and Σ, J

∧
∆K and J

∧
ΣK are both in T, where

the former implies p and the latter implies q. But if ∆ and Σ are both finite, then
∆ ∩ Σ is also finite, so J

∧
(∆ ∩ Σ)K = J

∧
∆K ∩ J

∧
ΣK is in T. But J

∧
∆K ∩ J

∧
ΣK will

imply p ∩ q; and since T is closed under implication, this means p ∩ q ∈ T.3

We also have to show that T doesn’t contain J⊥K. Note that the only proposition
that implies J⊥K is J⊥K itself. (Implication is just subsethood, and the empty set’s
only subset is the empty set itself.) So if the empty set is in T, it must be because
it is J

∧
∆K for some finite subset ∆ of Γ. But each of these finite subset has a model

Mw for some w in the intensional space. So none of these are empty (they each
have, at a minimum, w itself). So T doesn’t contain J⊥K.

This means T is a filter. Having established that, the rest of the work has already
been done. T can be expanded to an ultrafilter T′, and it will have an ultraproduct
MT. But for any sentence φ, MT � φ iff JφK ∈ T. And if φ is any sentence in Γ,
then JφK is in T.4 SoMT � Γ. Thus, if every finite subset of Γ has a model, so does
Γ.5
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